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ABSTRACT ’

In this report we summarize the research performed under the

ONR Grant NO0014-75-C-0293 during the calendar years 1979 and 1980.

RV S
P

We describe a number of electromagnetic scattering problems which

we have solved using the spectral domain methods. Among these are

A ar row o s

the frequency selective surfaces, leaky~wave antennas on dielectric

waveguldes and arbitrarily shaped conducting or dielectric scatterers.
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I. INTRODUCTION

This research effort was to develop new approaches to solving electro-

magnetic and acoustic scatrtering problems in frequency regimes and for
geometrical configurations, for which the conventional numerical or
asymptotic techniques are found to be inadequate, inefficient and/or
inaccurate. Rather than employ either the matrix met -wd: or the ray
techniques, which are typically valid in the low=- and " gh-frequency
regimes respectively, we investigate the application of the FFT algorithm

in the spectral or :ransform domain. Two different variations of the

method have been studied. The first of these employed asymptotic

solutions, such as those based on the Physical Optics or GTD methods, as
initial approximations for an iterative procedure for constructing the
solution to the scattering problem. The second version of the spectral

technique utilized the variational principle and developed a procedure

called the gpectral-Galerkin method. The end result of the application

of the latter method is a matrix equation for the coefficients of the

expansion functions used to repr .sont the nknown field. Typically, the

size cf this matrix is much smaller Lhan the one obtained via conventional
procedures. Our objectives were to investigate these spectral domain

techniques in great detail and to evaluate the scope and limitations of

the two approaches.




IT. SUMMARY OF TECHNICAL ACCOMPLISHMENTS ¢

During the last grant period, we have carried out an extensive .
investigation of the spectral-Galerkin and spectral iteration techniques
and have applied them to the problem of analyzing a number of electromagnetic
radiation and scattering problems. We have applied the spectral approach
to the problem of scattering by frequency selective surfaces (FSS) which
find widespread use in radomes, reflector antennas, and optical filters.
The spectral iteration technique has been found useful in the low and inter-
mediate frequency ranges where the cell size or the period of the FSS, which
comprises a screen with periodic perforations, is on the order of two
wavelengths or less. Beyond this limit, the spectral-iteration technique
is more efficient as it avoide matrix inversion altogether and derives
thé solution to the integral equation using an iterative procedure. Using ¢
these two methods, we have successfully analyzed several different versions
of FSS and have compared the results with theoretical and experimental
data published elsewhere. The results derived with the spectral approach
have not only been found to be accurate and efficient, but are also applicable
in a frequency range which is considerably wider than that of the conventional
method.

The spectral iteration approach has also been found useful for
analyzing other stuctures, such as conducting and dielectric scatterers
of srbitrary shape. To-date, only a preliminary investigation of this
problem has been carried out but the results appear to be quite encouraging.
An invited paper describing the spectral technique was recently presented
at the Method of Moments Workshop held in St. Cloud, Florida, under the

auspices of Rome Air Development Center. A paper describing this




presentation is appended herewith (Appendix I). Other manuscripts accepted
for journal publication and describing the work carried out with partial

support from this grant are also attached.
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APPENDIX A

SOLVING ELECTROMAGNETIC SCATTERING PROBLEMS
WITHOUT MATRIX INVERSION

R. Mittra, C. H. Tsao and R. Kastner
Electromagnetics Laboratory
University of Illinois
Urbana, IL 61301

Abstract - The applications of the Moment Method a la Harrington
to the solution of electromagnetic scattering and radiation problems
are well known, and the method has revolutionized the way boundary-
value problems are beirg solved today on modern computers. However,
as the frequency becomes higher and the body size becomes comparable
to the wavelength of the incident field, the CPU time on the computer
becomes large and the storage requirements also become large - if not
prohibitive. It is therefore useful to look for alternative approaches
to the moment method for attzckin§ the radiation and scattering prob-

lems in the so-called resonanc: region and above.

In this paper, we introduce an iterative technique in the spectral
domain which circumvents the limitations of the moment method alluded
to above. The method is computationally efficient because it makes ex-~
tensive use of the FFT algorithm to perform the Fourier transformatiom,
which i3 an integral part of the spectral domain approach. The pro-
cedure also has the un: ue feature that it has built-in convergence and
accuracy checks, features which are not typically found in other methods.
The paper illustrates the application of the spectral-iteration tech-

nique using scattering from perfodic structures and arbitrary bodies as
examples.

The work was supported by the Office of Naval Research, Contract
N00014-75-C-0293.
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I. INTRODUCTION

The purpose of this paper is to describe an approach called the
spectral-iteration technique for solving electromagnetic scattering
problems without the need for matrix inversion. The method is espe-
cially suitéd in the high frequency range where the dimensions of
structure are large compared to the wavelength. If the moment method
were applied in this range, the matrix size that would be required to
handle such structures would be large, and the matrix inversion time
as well as the storage cost would be prohibitive. Also, there are
geometries such as grating structures which we will be discussing
shortly, for which no asymptotic solutions are available because the
ray solutions based on GID, or physical optics approximations, are

entirely inadequate.

Although the spectral-iteration technique has recently been
applied to a wide class of problems,* for the sake of illustrating
the principles of the method we will use the example of periodic
structures such as arrays of conducting strips or periodically per-
forated screens which can be either free-standing or printed on
dielectric substrates (see Figure 1). These gratings have frequency
selective properties, ahd find many applications as artificial die-
lectrics, optical and quasi-optical devices, and dichroic surfaces

for antenna reflectors and radomes.

Conventionally, the problem of electromagnetic scattering from
these periodic structures is attacked using the mode-matching pro-
cedure employed in conjunction with the method of moments. A de-
scription of this procedure can be found in a number of papers on the
subject by Chen (1], Lee (2], and McPhedran and Maystre [3]. Though
this method works quite well in the low-frequency region, it becomes
prohibitively costly if not impractical at the high frequency region

where the aperture size is one to two wavelengths, or larger, because

*
For a bibliography on Spectral Domain Methods refer to the
Appendix.
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the matrix size required for an accurate solution btoecomes prohibi-

tively large and thg numerical computation becomes exiremely time-
conr wing and costly. As mentioned eaxlier, the high frequency
techniques, e.g., GID, cannot be applied to circumveat the above
difficulty either, because the complex geometrical configuration
of the structure does not iend itself to the ray fo-malism of GTD.
In this paper we introduce a new technique based on the spectral
domain approach which provides an efficient and accurate solution

to the grating problems described in this paper.

As a first step, the new approach begins with the formulation
of the problem in terms of an integral equation in the transform
domain. The standard procedure for deriving the integral equation
for the unknown aperture field (or the induced current) is still
followed; however, in the transform domain the convolution form of
the integral equation becomes an algebraic one. Furthermore, be-
cause of the periodic nature of the structure, the transform natur-
ally takes the form of DFT (discrete Fourier transform) which can,
in turn, be efficiently evaluated using the FFT (fast Fourier trans-
form) algorithm. The transformed integral equation is subsequently
solved, using an iterative procedure, simultaneously for the aper-
ture field and the induced current. It is evident that the method
avoids the time-consuming steps of evaluating the matrix elements
and their subsequent inversion. More importantly, the problem of
storing and handling over-sized matrices is circumvented even at
high frequencies, where the number of unknowns can exceed the figure
2000. An added feature of the method is that a built-in step in the .
iterative procedure provides a convenient measure for the boundary (

condition check, a feature not readily available in conventional !
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problem. The above authors have used the GTD solution as the zeroth
order approximate solution and have also employed an iterative pro-
cedure to generate the final solution. However, to-date this pro-
cedure has not been applied to the grating problems being considered
in this paper.

In the next section, we present the formulation of the periodic
grating problem. In section III, we describe the iterative procedure.
In section IV we illustrate the application of the technique to a
number of practical geometries. Finally, we demonstrate in section V
that the approach is useful for a class of closed-region problems,
e.g., waveguide discontinuities. A brief summary of the paper is

included in sectior VI and some conclusions are presented.

1. FORMULATION

For the sake of illustrating the spectral approach, we coasider
the problem of a3 uniform plane wave scattered from a free-standing v
periodically perforated conducting screen shown in Figure 2. However,
the method of solution is easily and conveniently extendable to the

case of a screen on a dielectric substrate.

Due to the periodicity of the structure, the electric field on

either side of the screen can be expanded in terms of the Floquet

space harmonics. Usiug the ert time convention (suppressed), we can
write
E gL x
"X x © - omn sz
= + 7 ) Y e for z > 0
i M=~ [=m—~d0 + mn
Ey E Y
and . 1) .
E X
X ] @ -sz
- 7 1 Vo © for z < 0 i
E m = N=-wn Y" ¢
RS ma
8
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=1 + + - -
where E” represents the incident field, (an, Ymn) and (an, Ymn)

are the reflection and the transmission coefficieants of the Floquet's

harmonic modes, respectively and wmn's stand for the Floquet mode
functions, given by

Yoo = exp[j(umox + any)]

where
u = 2ms _ k sin 6 cos ¢
mo a
m,n = 0,%1,%2,...
v = 2tn _ 272 cot 0 - k sin 6 sin ¢
on c a
and
2 2 2 .,1/2 2 2 2
jlk” - (u *+ vm)] if k° > (um +v )
Y -

1/2 2

2 2 2 2 2
-I(um+vm)-k] if k <(um+vm)

The z-component of the E-field can be derived from (1) using the

divergance theorem.

Enforcing the condttion that the tangential field is continuous
across the interface, we obtain

+ - + -
xmn xmn . Ymn Ymn whenm#$# Oorn#¢0
and
coxt egteax , v sty
00 x 00 0o y )

The H-field in the region z > 0 and z < 0 can be derived from
(1). Evaluating the H-field at z = 0 and z = 0+, subtracting the
expression for one from the other, and making use of the requirement
that the tangential components be continuous across the aperture,
one arrives at the equation:

10
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~ 7 (-] T4 a1
- ’4 .Ahn an th -Hx + efi Jy]
~i Z Yy = for z=0
c -A Y -H + 8[=J ] (2)
| “m ma | | mn |y 2 x J

ere A’ is the incident H-field,

J 1s the induced current on the surface,

Ann " vnn/Ymn’
2

nnn - vmm/Ynn = Yan?

2
cnn Yon ~ umo/Ynm'

In (2) we have used the notation that for a function f(;) defined ca the

z = 0 plane, where r is the position vector on that plane, the trunca-
tion operator 9 is defined by

8(f(r)) = £(1r) for r on the conducting surface

"

= 0 for in the aperture

and
B(£(r)) = £(r) - (£(r))

The obvious identicy 8(J) = J and that £ x [H(z = O+) ~H(z=0)] =7J
have also been used in deriving (2).

Unlike the integro-differential equation in the conventional method,

which applies only in the aperture (or strip) region, (2) is valid over

the entire surface. The price paid for extending the equation to the

full range is the introduction of an extra unknown J. However, as ve

will soon see, the additional unknown J can be solved for along with the

aperture field using the iterative procedure discussed in the next section.

IIT. ITERATIVE PROCEDURE

The summation involved in (1) and (2) can be readily identified as
the DFT operation. Lct F be the operator representing the DFT, and let Et

11
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represent the tangential electric field in the transformed domain.
Identifying (x;n, Y;n) in (2) as the Fourier coefficients Et’ and
vriting G for the matrix

ve can Qrite (2) symbolically as
H =1 -
F( E)=-H + 8¢3) (3)

where the subscript t indicates the tangential components, and it is
understood that all the quantities are evaluated at z = 0,

If the induced current were available, the solution for Et could

be immediately obtained by invoking (3) and by using
B« THFIRL + 8O (4)

In practice, however, J is the unknown to be solved for, together

with Et and hence (4) cannot be used directly. Instead of using (4),

a recursive relation between the (n+l)th approximate solution %(n+1)

2(n)
E

and the nth approximation is now derived and the two unknowns

ic and J are solved for simultaneously using an iterative procedure.
To derive the recursion formula for ig")
vhich relates 3 and (™

, we begin with (3),
» and write

8G™) - 26 - ié“)) + ﬁ: (5)
Substituting (5) into (4), one obtains
ig’*l’ . c‘l(r'l(-ﬁ: + 8P - EE“)) + i) (6)

Equation (6) is the desired recursive formula. Before inserting
i:n) into (5), we adjust its amplitude by multiplying with a scale

12




factor K, computed according to the variation expression

<E(n), g

t Ht>
K= —~ (7
™, p@ . §M),
t t
vhere <f, p-fapcrture feg-da.

Equation (7) is obtained by applying the one-term Galerkin's
method to (3) using E( n) as the testing function. It is apparent
that K = 1 when E( n) 1s the exact solution. K, therefore, also

prcvides an indication of the accuracy of the nth iterated result
in a weighted-average sense.

In the following we proceed to cutline an iterative procedure
for solving (6):

1. Begin with an initial estimate EéO). The amplitude of
E:o) is to be properly adjusted using the scale factor
K determined from (7).

2. Compute E (0), the discrete Fourier transform of EEO).
This step can be carried out efficiently using the
FFT algorithm.

3. Compute G° 3(0)

4. Obtain the nrr of &+ B ustng rrr.

5. Subtract -u from the result obtained from step 4.
This gives chc zeroth-order approximate solution J(o).
Generally, the approximate solution for J obtained in
this step has non-zero valuas extending beyond the con-
ducting surface. The satisfaction of the boundary con-
dition for the induced current can thus be verified by
checking how well the nth approximstion for thc current
3™ 44 confined to the conducting surface.

6. Add -ﬁ: to 7% obtained 1n the last step, and take the
inverse DFT of the result using FPFT.

13
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7. Multiply g1 by the result obtained from step 6,
obtatntng B

8. Take the invcrsa transform of E(l) to get E(l)

The exact solution for E: should have zero value on
the conducting surface. This criterion serves as a
boundary condition check for the approxina:e solu-
tion E(n) obtained in this step.

9. lnpcac the whole procedure, as necessary, using
B(E(l)) to generate the next higher-order solu-

cions J(l) and 2(2) until convergence is achieved.

In the following two sections several examples are presented to
illustrate the application of the technique described above.

IV. SCATTERING FROM GRATINGS AND GRIDS

Let us consider a free-standing, strip grating structure illumi-
nated by a normally incident uniform plane wave as shown in Figure 3.

Let the incident E-field be polarized parallel to the edges of the
strip (an H-wave).

The formulation for this problem is given by (2). The iterative
procedure discussed in section III is applied to solve for the tan-
gentigl aperture E-field, Et’ and the induced current density, 3.

rigurc 4a shows the incident E-field truncated in the aperture,
wvhich 1s uscd as the zeroth-order approximation for B I OF YN
!(O) - B(E 1. The 7 derived from B(o) is shown in Pigutc sa. 3¢

cignificnnt non-zero values c:tcndin; into the aperture region.

This could be expected because of the crude initial estimate made for
!:0). Figure 5b shows 3(1) obtained after one iteration. Observe the
significant improvement achieved with just a single iteration even
though the zeroth-order approximation for E( ) wvas rather crude. Higher-

ordar solutions for i(n) J(“), obtainod via further iterations, are

showm, respectively, 1n Figures 4b to 4d and Piguras 5b to Sd. The

14
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rapid convergence and the accuracy, which is verified by the boundary
condition check of the solutions, are well-demonstrated in these
figures. The induced current density J also shows the expected edge

behavior, 1.e., it becomes large at the edges as it should for the
incident H-wave.

Figures 6 and 7 show the solutions for Et and J obtained after
four iterations when the gratings are illuminated by an obliquely
incident plane wave with an incident angle 6 = 30° and with the H-
field polarized parallel to the edges of the strip (in the E-wave
case). Again, the boundary conditiong are satisfied extremely well
by the results, and the aperture E-field also shows the expectad edge
behavior for the incident E-wave.

Next we consider the scattering from a free-standing conducting
grid illuminated by a normally incident plane wave. The geometry of
the problem is shown in Figvre 8. The aperture area is approximately
IOA2 whereas the cell area is about békz. The initial approximation
for Ec is still chosen to be the truncated incident field, and the
dominant component of the tangential aperture E-field is shown when
the incident E-field is polarized in the y-direction. ‘

For all the computations in this saction, 32 terms in the
Floquet expansion functions are used in representing the unknown
fields along each of the two dimensions. This leads to 211 equiva-
lent unknowns to be solved for. The computation time, however, re-
quired for deriving the solution is quite moderate (5~ 6 secs. of CPU
time on the CDC Cyber 175 System). Clearly, any matrix method dealing
vith such a large number of unknowns will be totally impractical.
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regions of dissimilar dimensions. An open-region type example is a
corrugated surfac% which can be thought of as a junction of two
regilons, viz., the infinite half-space and a periodic array of short-
circuited waveguides. For the sake of siuplicity, a closed-region
type problem - a step discontinuity in a parallel-plate waveguide -

is considered in this section. The geometry is shown in Figure 9.

LT vy -

~TE

The incident field is a TE mode wave.

lem can be found in the literature.

The formulation of this prob-
The integral equation is given

by
b b
[ B K xyxtyax' = f E (x")K (x,x")dx' - 21
J Y Y x
0 0
for 0 <x<b, z=0
where Ey is the unknown aperture E-field,
Hi is the incident H-field,
1 b an ul
-~ 1y mo— - an mr .
K (x,x") Jum m-z-m l"m sin 2 X sin 2 X
+ 1 ° + joug 0l
1y oot o mr
K (x,x") Jon I [p sin - x sin 5= x
(102 - @HYZ e > &2
a a
Fu = 4
an.2 . 2,1/2 2 T, 2
§ ((a) k) if k™ < (a)
and
2
(-102 - EHYZ g > @2
It =
o
(@2 _ 312 1f 12 < @2
. b b

Note that (8) is defined in the region 0 < x < b. To apply the
iterative technique, it has to be extended to the full range
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Figure 9. Steprdiscontinuity in a parallel-plate waveguide
with a TE incident wave.
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0 < x < a. This is achieved by introducing an extra unknown func-
tion J(x), and thes extended equation takes the form
a
J B, (x K (x,x")dx’ -I Ey(x')K+(x,x')dx' +8(-20) + Q) (9)
0
for 0 < x < a

where for any function f(x)

0(f(x)) = f(x) 1f0<x<b

=0 ifb<x<a
and
B(£(x)) = £(x) - 6(f(x))
A recursion formula relating the (n+l)th order solutfion E§n+1) to

the nth solution Eén)

can be derived via a procedure similar to that
developed in section III. The formula is

a a a a
I g0 L . f g™t + a(-2ul) + 8¢ [ Vg - [ (™t - o(-2ul))
y y x y y x
0
(10)
Equation (10) is now solved using an iterative procedure similar
to that developed in section III. The integrations in (10) can again
be carried out using the FFT because of the characteristic nature of
the kernels. Figure 10 shows the aperture E-field distribution at the
discontinuity. The initial approximation for Ey is taken to be the
incident field truncated in the aperture.

The result is obtained in three iterations with 32 expansion
functions used in reprasenting the unknown field. We note that the
boundary condition on Ey. viz., that it vanishes at the edges, is
satisfied by the iterated solution.
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VI. AN EXTENSION OF THE SPECTRAL-ITERATION TECHNIQUE FOR ANALYZING

SCATTERING FROM BODIES OF ARBITRARY SHAPE

In the past, the application of the spectral technique has been
largely restricted to scatterers with two-dimensional geometries and

with planar facets.

A new extension of the method, outlined below, allous one to
analyze the problem of scattering from bodies with arbitrary shape
and size. The method has wide application since it is capable of
handling body shapes which are not conveniently treated either with
the low- or the high-frequency techniques, an example being a long
and narrow cylinder of finite length. Moreover, the range of appli-
cation of the spectral-iteration approach encompasses both the low-
frequency region, where it can provide faster and more efficient
solution than the conventional moment methods, and to the high-
irequency range where it yields both the surface current and the
near fields. In addition, the method has a built-in boundary con-
dition check, a unique feature not present in asymptotic techniques,

e.g., the ray methods.

The first step in the spectral-iteration method is to repre-
sent the scatterer via an array of flat slices. The current on each
such slice is sampled by a thin ring on the left side of the slice
as shown in Figure 11. The iteration begins with an initial guess
for the current distribution on the scatterer on the basis of, say,
the physical optics (PO) approximation or the GTD. Next, we evalu-
ate the field at the first plane which is farthest to the left of the
scatterer. A process of improving the assumption for the current then
starts. It is done one slice at a time from left to right, as explained
below. Once the whole body has been scanned in this way, the first
iteration is over, and the process is repeated until a convergence is
attained and the boundaiy conditions are satisfied.

The manner in which the current rings are updated is described as
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follows. Consider the pth slice, one which is bounded by th? pth
plane on the left and the p+lth plane on the right, and contains
the thin current ring Jp at its left immediately to the right of
the pth plane (Figure 11). At the pth-plane the scattered field
consists of two components, viz., E;'and E;: ﬁ;'is the aggregate
of the contribution from all of the sources to the left of the pth
plane. It; spectrum is thus propagating to the right and, conse-
quently, the radiation condition dictates the choice of the propa-

gator e-jkzz

for any of its plane-wave spectral components. The
second contributor to the scattered field is f;', which is the con-
tribution of all the currents to the right of the pth plane and is
thus propagating to the left. We assume that in the process of
scanning the body from the left to right all the currents to the
left of the pth plane have been updated, implying the E;'has been

updated as well.

We next proceed to update the current in the pth slice, i.e.,
Jp. To do this, we look at the plane immediately to the rigzt of
Jp. This plane is shown by the dashed line in Figure 5.1. !p can
be transformed to this plane simply by adding the contribution of
Jp. In the spectral domain we have the expression

>4 - ~
E =E +G-1J 11
|4 P P (1)

vhere G i{s the Green's function in the spectral domain, the - super-
script denotes the plane immediately to the left of JP, and the +
superscript is associated with the plane immediately to the right

of Jp. Since E;' is known, we arii?ow able to use the assumed JP in
conjunction with (11) to compute E and then the total scattered
field

Next, inverse transforming Ep yields the scattered electric field in
the spatial domain and the application of the boundary condition

29

.




allows one to replace the total scattered field E_ inside the body
by _Einc. A Fourier transform is then taken and the following equa-

tion is used to obtain the updated E;'

Ep* - r:: (updated) - Ep* (12)

Finally, the updated Jp is detived from (11) and the updated E

-’
Also, EP+1 is obtained from Ep via the equation

-jk_A
*- +4 z
Ep+l Ep e (13

This completes the operation on the pth slice and we move to the
(pt+l)cth slice to repeat the process in order to obtain a new value for
Jp+l' We continue in the same manner, proceeding to the successive
slices toward the right until we are finished with all the slices and
have covered the entire body. The end result of this series of steps
is a complete, updated version of the current on the entire scattereér.
Having obtained this, the first iteration is completed, and the whole
process can be repeated.

The iteration process is continued until convergence is achieved,

as indicated by the satisfaction of the boundary condition on and in
the interior of the scatterer.

It should be noted that since the two-dimensional FFT is used,
even for a three-dimensional scatterer, the method is computationally
efficient and its storage requirement i{s low. Furthermore, since the
boundary-condition check is applied at each stage of the iterationm,

the accuracy of the final (convergent) result is guaranteed.

Preliminary studies have indicated that the arbitrary body scheme,
though originally conceived in connection with perfectly conducting
scatterers, may prove useful for handling dielectric scatterers as
vell. It appears that the method may be generalizable to inhomoge-~
neous dielectric bodies.as well, although more work remains to be done
to determine the scope and limitations of this approach.
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APPENDIX B
A SPECTRAL DOMAIN APPROACH FOR COMPUTING THE RADIATION
CHARACTERISTICS CF A LEAKY-WAVE ANTENNA FOR MILLIMETER WAVES
R. Mittra and R. Kastner
ELECTRICAL ENGINEERING DEPARTMENT

UNIVERSITY OF ILLINOIS
UxBANA, ILLINOIS 61801

ABSTRACT

This paper deals with a new method for evaluating the complex
propagation constant 8 in a leaky-wave structure comprising of thin,
metallic rectangular strips etched on a dielectric rod of rectangular
cross section. The radiation pattern of the leaky wave antenna can be
determined once 8 is known, since Re(B) governs the direction of the main
beam and Ia(8) Qccounts for the beamwidth and aperture efficiency. ™n
addition, the knowledge of the dependence of 8 on frequency allows one to
design the antenna for frequency-scanning applications. The method
employed in this paper is based on the spectral domzin approczh which
formulates the eigenvalue problem in the Fourier transform dumain.

Computed results are shown to be in very good agreement with experimental

measurements.

s s bk R A o Wi S O b et




1. Introduction |

In this paper wve descrite a novel mathod for eval ating the complex
propagation constant B in a leaky-wave structure comprised of an crray of
thin, metallic, rectangular strips etched on a dielectric rod of rectangula-
cross section. The geometry of the problem is shown in Figure 1. This
configuration finds useful applications as a frequency scannable antenna,
particularly at millimeter waves where the antenna can be conveniently
integrated with dielectric-based planar integrated circuits [1,2,3].

The complex propagation constant 8 along a leaky-wave antenna
determines the radiation pattern of the antenna. Specifically, Re(B) governs
the direction of the main beam, and Im (B) accounts for the beam width and
aperture efficiency. In addition, when the dependence of B on frequency
is known, it is pogssible to design the antenna for frequency-scanning
applications.

In the past, the determination of B has often been accomplished via
experimental means, mostly by near-field probing techniques. Analytical
evaluation of B has been carried out for structures for which the leaky
wave is generated from guiding structure which supports a fast wave, e.g.,

a slotted waveguide [4]. For such a structure, B differs only slightly

from the guided-wave propagation constant in the absence of the slots as i



b

sets of networks are required for every hybrid mode. In addition, the dis-
<continuities must be incorporated into the equivalent network by lump-element
representation, which by themselves may require the solution of some involved
boundary-value problems.

In this paper we employ a method based on the spectral approach which
formulates the eigenvalue problem in the Fourier transform domain. A des-

cription of this method appears below.

2. Formulation of the Problem

The formulation of the problem is based on the spectral domain
approach which has the following advantageous feature, The Green's function
for the dielectric substrate region is conveniently expressibie in the trans-
form or spectral domain in a closed form, whereas it takes a complicated form
in the conventional space domain approach.

Referring to Figure 1, let us consider a y-polarized wave traveling
along the z-direction. Because of the periodic nature ot .he geometry, we
can cxpress the fields propagating along the struc.ure in terms of Floquet
space harmonics with wave numbers Bn (=g+ 2arn/A), where B8 is the complex
wave numder w2 are seeking. It is evident that only a finite number of Bn
are in the visible region, i.e., satisfy the criterion |Re Bnl < k, where k
is the free-space wave number, and only these Bn contribute to the leaky-wave
radiation. Tvpically, these leaky-wave antennas are designed such that
n = *1. As alluded to earlier, the real part of Btl determines the direction
of the main beam and its scanning propertiesg, whereas the imaginary part

determines the beamwidth and efficiency of the antemmna.
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As a first step toward attacking this problem, we replace the
dielectric rod with a slab using the well-know effective dielectric
constant method [6], [7]. The effective dielectric constant is given

=
feff = © Tk

by

where k is5 the free-space wave number and ky is the fundamental mode with
spatial frequency corresponding to the cosine variation in the y-direction
inside the dielectric. Next, the Green's function for the geometry is
constructed in the spectral domain, because the expression for the Green's
functiosn in the transform domain is considerably simpler than the corres-
ponding one in the space domain. The expression for G , the two-dimensional
Fourier transform of the spatial-domain Green's function for the E-field

of y-directed point source located at a distance d above the dielectric
surface (Figure 2), is formulated in a fashion similar to Collin's [8].

It is given by

G(:,u,v) =
ik 2T -jksz
< N ¢ S -jk_.|x-d

IR N (ko + Kkgode (b - Bypde 2 glx-dl
Jiplt —u thZT a -jksz

(kxl + ka) € - (Axl - ka) € 2)

where

k = /I-uc-v<

x1

k., = i oo

x2 eff
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and u and v are the transform variables corresponding to the y and 2z

directions, respectively. These are normalized with respect to k; hence,

all the dinensions are expressed in terms of electric lemgth (radians).

B e Anan

In our case, d=0. The
by keeping the rest of

re;resentation for the

tedious Fourier inversion of (2) is avoided
the development in the transform domain. The

electric field in terms of the current distri-

bution on a strip takes then a simple forum of algebraic product (as

oprosed to convolution in the space domain). We have

E - &(o,u,v) . 3(o,u,v)

(3)

whera J is the transform of the assumed current distribution on the

strip. Sirdce w < < L, it is reasonable to assume a cosine variation
in the y direction and uniform distribution in the z direction. J
i3 then proportional to
ul, v
- cos = sin—z—-
e ST T “
2 2 2

To obtain the eigenvalie equation, we superimpose the electric

fields gensrated by the periodic array of scrips and apply the bourndary

cedition

zero. The o' strip is characterized by an amplitude e Bns

displacement of nid in the z-direction.

its current distribution is

that the tozal electric field osn a representative strip is

and a

Therefore, the transform of

(5




and the total field is

Eac3] ellv-8)ns | 6y .|

ns-ea

The total E-field on any strip is now equated to zero in the Galerkin

sense:

T

J[ E-J3dydz=o0 o
strips

-

By Parseval's theorem, (7) is also expressible by

i f f E - 3 du dv =0 ‘ )

‘- g

Sudbsrizuczing (6) into (8), one obtains

- [ Sw Bwy [0SV ™ giae-0  aw

- n N

Geiliziag the {denticy

: (7=8) A - : H
t QJ L J Do - L l L1 (v-a—n ZA?—) (n)
ne —- ne-a

ore cf r-=: integrals is elizinated ard (9) becoces

L4

fquation (12 ) is che desired eigeavalue equatioa. The solution of

complex 2 satisfying (12) yields che desired complex wave nunber for

ch“leakyouavc anteana.




3. Results.

Fquation (12) requires an integration along the real axis in the
u-plane and a surmmation over all Floquet modes. Since all the consti-
tuents of (12) are symmetric with respect to real u, the integration
need be carried out only along half of the u-axis. Moreover, there
appears to bé little or no contribution to the expression beyoad u = 2
aad |n|= 2.

The solution for 8 1is obtained via a search procedure which
seeks the zeroes of Eq. (12) within some numerical tolerance. The antenna
under consideration had 29 strips with the following dimensions at the center
frequency of fo = 80 GHz (see Figure 1): L = 0.81, T = 0.3767A, W = 0.3387),
A = 0.6667A, and with € = 2.46. The computed B for f = 0.95f°. 1.05f° and
1.1f° was -.31 -3.03, -.222 -5.05, ~.13 -§.03 and -.05 -§.03 respectively.
These solutions account for main beam directions of 1080. 1030, 97.5o and 93°
ith respact to the z~axis, compured to the experimental values of 1090,
103> 98° ané 92°. These values of 3 correspond to a backward wave (n = -1).
The real part of the fundamental (n = o) B differs very little from that of
an unloaded dielectric rod and can be predicted by approximate methods [1-3].
However, the imaginary part of 8 has not been analytically computed before
for this structure. The experimental results, obtained by near-field probing
teczhniques, yvield Im(3) = -.03 which is in very good agreemant with our
thecry. As sexn from Figure 3, the measured and cumputed beam widths, of
about 5°. also agree well with each other. The behavior of the experimental
pattern in the side-lobe region is attributable to the radiation from the

pattern feed region which was not modeled on the theoretical calculations.
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Cecmetry for the Construction of the Green's Functiom.

‘ 42
r(»- e —— e YR e R T YT T T e
uL—-n - C A N e




T T T e

[Eyl(dB)

o] T T T T
EXPERIMENTAL
st o o o THEORETICAL - o
|
n
-0k - -
-5 g - ;
N h f“ﬁ |
. i |
ol ',y’% § W k !
o8 W;“‘ll I Hu’t! L
160° 120° 80" 40° c°

8

Figure 3. Computed and Measured Patterns of the
Leaky Wave Antenna in the x~z plane.

43




References

[1] K. L. Klohn, R. E. Horn, H. Jacobs and E. Freibergs, "Silicon
Waveguide Frequency Scanning Linear Array Antenna,”" IEEE Trans.

Microwave Theory Tech., vol. MIT-26, pp. 764-773, October 1978.

[2] S. Kobayashi, R. Lampe, N. Deo and R. Mittra, "A Study of

Millimeter-Wave Dielectric Antennas,” 1979 AP-S International

Symposium Digest, pp. 408-411, June 1979.
[3] K. Solbach, "E-Band Leaky-Wave Antenna Using Dielectric Image

Line with Etched Radiating Elements," in 1979 MIT-S International

Microwave Symposium Digest, pp. 214-216, April-May 1979.

[4] T. Tamir, "leaky-Wave Antennas," chapter 20 in: R. E. Collin

and F. J. Zucker, Antenna Theory, Part II, McGraw-Hill, 1969,

PP. 259-297.

(5] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves,
chapter 2, Prentice-Hall, 1973.

[6] R. M. Knox and P. P. Toulios, "Integrated Circuits for the

Millimeter Through Optical Frequency Range," in Proc. Symp.

Submillimeter Waves (New York), March 31-April 2, 1970.

{?7] W. V. McLevige, T. Itoh, R. Mittra, "New Waveguide Structures
for Millimeter-Wave and Optical Integrated Circuits," IEEE Traus.

Misrowave Theorv Tech., vol. MIT-23, pp. 788~794, October 1975.

{8] R. E. Collin, Field Theory of Guided Waves, chapter 11,

McGraw-Hill, 1960.

+ T Py s = e - -
r—— T

i ——"p
~ i agy -y .

—— =




$oen

APPENDIX C

RADIATION FROM AN OPEN-ENDED WAVEGUIDE WITH BEAM EQUALIZER -~

A SPECTRAL DOMAIN ANALYSIS

Wai Lee Ko, Vahraz Jamnejad, Raj Mittra, and Shung-Wu Lee*

ABSTRACT

A septum and an impedance matching post are used as a beam equalizer
in an open-ended waveguide-feed for reflectors used in satellite communica-
tions systems. The performance of this design over a frequency band is
evaluated usiag a spectral domain approach. The computed radiation
patterns in the E- and H-planes, as well as the results for the impedance

match, are presented in the paper.
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I. Introduction

Rectangular waveguide array feeds for reflector antennas play an
important role in the design of satellite communication systems. To make
the radiation pattern more symmetric in the E- and H-planes of the feed,

a beam equalizer i3 needed. The design used in this case is a septum placed
across the mouth of the wavaeguide such that the aperture distribution is
reshaped to satisfy the new boundary conditions imposed by the septum.
Consequently, the H-plane radiation pattern is narroved to approach the
E-plane pattarn, thereby achieving the beam equalizing effect. However,
the introduction of such a septum creates an impedance mismatch problem for
the faed. To alleviate this problem, a matching post is placed behind the
septum so that the reflection back into the waveguide is minimized.

| The parformance of this design over the desired frequency band is
evaluated using a spectral domain approach, or more specifically, Galerkin's
mechod applied in the spectral domain [l]. The scattered fields on both
cides of the beam equalizer are represented in terms of their Fourier
transforms or spectra which can be related to the induced surface currents
on the saptum and the post. These unknown induced currents are expanded in
terms of known basis functions and unknown coefficients. A matrix equation
for the unknown coefficients is derived by applying the boundsry conditioms,
and the moment method is then employed in the spectral domain to solve for
these unknown coefficients, which in tura give the answer to the unknown
scattered fields. The scattered fields for all modes obtained in this
manner are then used to compute the reflection and transmission coefficients
for each mode, propagating or attenuated. A tacit assumption made is that

the scattered field on the open-ended side of the waveguide is the same as
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that in an infinitely long waveguide containing the beam equalizer. In
other words, the truncation effects of the waveguide are igrored in

this analysis. The transmission coefficients are used to weight the
radiation field due to each mode of waveguide and the superimposed
radiation pactern 1is computed. The reflection coefficients are used

to 2ssess the impedance matching performance. Numerical results indicate
that the E- and H-plane principally polarized patterns are aequalized
extramely well over the entire frequency band of operation and that the

impedance matching is also quite satisfactory.

II. Analysis i !
The geometry of the waveguide with septum and post is shown in
Figure 1. Since the cross-section of the post is very small, the post
is modeled as a narrow strip to simpiify the analysis. The incident
field is propagating in the z-direction towards the post as shown
schematically in Figure 1. There are surface currents induced on the
septum and the post due to the incident field. The scattered fields

radiated by these induced surface currents then propagate in both the

s s At v W -

z-direction and the -z-direction, giving rise to the transmitted and
the reflected waves, respectively. In the following analysis., the
truncation effects of the waveguide at z=0 are ignored, as though the
post and septum were located in an infinite guide.

The incident fiald in the waveguide can be expressed in terms of

TE and ™™ modes in the usual manner:

TE  oodes:
nm
o
wy (=)
E: - jhm—:z—- cos (l:1 x) s:l.n(ﬂ‘;11 y) exp (-jam z)
c
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an
8 (T)

1 nm ,am mm
Ey = jhnm ZTE-—k-g-— sin 3 X) cos (b ¥) exp (-ij z)
e} =0
z
i i
Hx -Ey / ZI'E
i i
Hy Ex / ZTE
i anr mT N
Hz hmn cos (a X) cos (T y) exp (-ij z) (1la;
T™  modes:
nm
EX = -je —-z-——a'“(%) os = x) sin EX ) (=33 2)
x am kc ¢ a sin b 7 P J nm z
mm
i . ME(T) nw mT .
Ey “je Z.m T sin (-a— X) cos (-E- y) exp (-anm z)
i, an ar
Ez e n sin (a x) sin (b y) exp (-ijn z)
1, .1 , 1.1 1
Hx Ey / ZTH ’ Hy Ex / ZTM ; Hz 0 (1b)
2 4 (2T oL 2 m k2 .2 2 o2
where ki = () + 3 ; BYm = K kS k w® ue
ZTE = uu/Bm H ZTM - Bm/(ue)

The scattered fields can be expressed in terms of their Fourier
spectra, which are in turn related to the Fourier spectra of the induced

surface curreats. The Fourier spectra of the induced surface currents
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are then solved for by the moment method applied in the transformed,
i.e., the spectral domain. Specifically, Galerkin's method 1is used
in the present analysis — the same basis functions are used as testing
functions in the moment method. Upon solving the spectra of the
induced surface currents, the scattered fields can be obtained in
a straightforward manner. The analytic details follow,

Ccrrespondiing to sach incident mode, the scattered fields E; and

E: can be represented in the following form:

Ex (b/2<y<hb) ) sin[yn(b—y)]
= cos (E— x) f fn(a) exp(-jaz)da,
l:: (0<y<b/2) sin v_ vy
(2)
(;: (b/2<y<b,; sin[Yn(b-y)]
~ sin (%F x) [ 8, (2) exp(-jaz)da
‘E: (0<y<p/2) sin vy !
L -’
where
1/2
o (k2. (BTy2 _ 2
Ya (k (a a<] M

and fn(u), gn(s) are the unknowu Fourier spectra to be determined. The

expression for E; is then obtained from the Maxwell's equation Vv - E =0,

giving
E) (b/2<y < bﬂ . r«:os[vn(b-y)?
|- sin(%? x) hn(a) ; aexp(~jaz)da
' - ! (%)
(B} (0<y<bd/); -cos Y_ y
W’ ' ° '
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with

ED) £_(2) + ja g_(a)

hn(a) = - (5)

n

Now that we have E, we can find H by using the curl-of-E Maxwell's equation.

However, in anticipation of relating the H~field with the induced surface
currents on the septum and the strip, only the x- and the z- components of

the H-field are computed, giving

ﬁli (b/2<y<b)

= —% sin(— x) Jm exp(-jaz)

t!i (0<y<b/2)

Y, Zn(a) + ja hn(:)] cos ['(n(b—y)ﬂ

|

| l da
[ngn(a)-jah(u)]cosy y |
& _
P: ®/2<y<b)
i - j-—.)];.x' <:os(na—TT x) [ exp(-jaz)
s -
{ B (0<y<b/2)
<z -~
[Yn fn(a) + (%1) hn(x)] cos [Yn(b-y)]
da

(-v, £ (@ - &5 h,(2)] cos v_ v

(6)
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The induced currents on the septum and the strip can also be expressed

in terms of Fourier spectra. For each incident mode, we have

Jz (x,y = b/2, 2} c;in(%F x) f jz(a) exp(~jaz) da
- N
i fo (x,y = b/2, z) Lfosc%; X) {a jx(a) exp{(-jaz) da

where jz(a) and jx(a) are Fourier spectra of the induced surface currents

S M

to be related to the spectra of the scattered H-field. This relationship

is obtained by enforcing boundary conditions on the septum and the strip

and can be written as

R = =

lim . - lim . r
“H (y= [, ®B/2+e)) +H (vo= 5 (/2 - ) ; I,
- (8)
lim lim '
B, (v = 5 /2 +€)) -H (v = 5 (/2 ~¢)) I

where ¢ 1is a positive quantity.

Substitution of (6) and (7) into (8) leads to the following algebraic

equations:

[--2 an
' Jon <08 =) I, g, (x) - jahn(a)] i ()
j - (9
vy b
bnd a +« (AT !
._jw—u cos (—-2—-) [Yn fn(f.!) (a) hn(a)]' : jx(a)
. 4
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Substituting b _(a: from (5) into (9) and nanipulating the resulting equationg
n

leads to the following matrix equation for fn(u) and gn(a) in terms of the

transform domain currents jx(a) and jz(a).

n = M
lr am 2 nzw; r | 3, (a)
~ja (23) k¢ - £ (a) e
ja ( az a "j(qun z
- an (10)
ez - g2 ta & g, (a) 2eos (=) Jx(m)‘J
'\. o - ) -

An inversion of (10) gives

r A ar 2 nztrz rr
£ (a) ~ja ) k- ==~ 13, ()
n ~juy a
- b ! (1)
2 "a .
2K"Y cos(—) .
g_(2) P L) 1@
° ' R NG
- -
If the Fourier transforms of the currents jz(a) and jx(z) are known, we

can obtain fn(a) and g.(3) from (11). Subsequently, (2), (4) and (6) can

be used to derive the scattered fields by substituting for fn(a) and gn(ﬂ)

in those expresgions., The remaining task is to solve

currents jz(a) and jx(a). using the

for the transform

Galerkin's method spplied in the
transform domain.

First we express the corresponding space domain currencs in terms of
a linear combinacion of a ger of suitgble basis functions with unknown

. ———

-
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S E—E -

r 7 i} I a
Jx(x,z) cos (ﬁ—x) [Ucii1 AiPi(z) + UCAOPO(z)]

! ul f:‘s (2)) |
J (x,2) isin G [Ucl-l 13,.(2

[;os (%Ex) Jx(z)

nrw
310 G50 3, a

where Uc and Ut are truncation functions on the septum and the strip,
respectively,

1 =c<z<0,

0 otherwise

1 ~(c+ d+ t)<z<=(ctd)

0 otherwise

and po(z), pi(z), and qz(z) are basis functiong to be defined later.

Since the post is assumed to be of very small radius, we model it as
a strip of width t, which {s also small. Hence, onlv the x-directed current
on the strip is expected to be significant., In (12), the unknowns to be

evaluated are the coefficients A's and B's. From (7) and (12) it can be

seen that

I
i1 (a) Z AP, (a)
x (=0 i1

= L
1z(a) zfl Ble(a) (13)

where
0

1
Pi(u) * Lc pi(z) exp (jaz) dz, i=1,2, ..., 1

[-(ctd)

Po(a) -5 J-(c+d+c) Pe(2) exp (yaz) dz
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0

)
Q, (a) -—'-! q, (z2) exp (jaz) dz, 2 = 1, 2, ..., L
ol (14)

Replacing (13) in (ll), one obtains the expressions for the transform

domain functions fn(a) and Gn(a):

£ (; [ 2822 (¢ AP (@) -5 [} 5g (:)-]
n® o (k¢ - pr (LEO i1 ] a [251 L ]
- Zkzvn cos (Y_z“'ﬂ) . .
8n(a) jao= " [iflAiP (a)] + (k2-q2) (zilslqz(a)]
. . J

(15)
Substituting these expressions in (2), (4) and (6) we obtain the final

results for the scattered fields in terms of the unknown coefficients

A's and B's. In order to find these unknown coefficients, we enforce the

boundary condition for the electric field on the septum and the strip,
which requires the total tangential component of the electric field to be

zero, i.e.,

E [ -E i
x x
- at v s =
s i
E -E
z z_ (16)

Using (1), (2), and (15) in (16) we derive the following equations for A's

and B's.

[;2 - & )i] tan (122] Pi(a) exp(-jaz) da
1'0 .. 2

L " b
-1§1zsr 7 tan () Q,(3) exp(-jaz) da
In]l i ‘o= n
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L

a 8 2
na aT -

™ kz emsin( 2) exp (+ jﬂmnz)’ for TM modes.

= c
2 B8 -k—z h sin(®) exp (+ j8_ z), for TE modes
b k2 nm 2 P jnm ! ’
(]
at ‘E A f’ 2 tan (Zn—b) P (a) exp (-jaz) da

I % i:O 1 2 i P az

- 2 2 )
B f -(k_;a_z tan ('-;—)Ql(a) exp (=jaz) da
- n

2
- 2ik o -
+ 2 ¢ n sin (—2) exp (+ jsmnz), for TM modes

0] , for TE modes (17)

Now multiply boch sides of (17) by the basis functions pi(z) and qz(z) and

integrate over z to obtain the following equations.

2 nznz L = 1 an *
k" -=5=) L A [ - can () P,(a) P, (a) da
a i=0 - 'n
nT L * 2 an
. -1 5 zfl B, L —n— tan () Q, (a) P¥,(a) de
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r-28538 2 P*, (8 )C]
—3_nm EE e sin %F i nm- | , 1'=0,1,..,I for TM modes
“u k- om P, (3|
(] i nm’ |
= ﬂ L J
- 8
o k2 an lpzv (Bm) !
L £ ongsa | . 1'=0,1,..,I for TE modes
kc Pi' (Bnm)
- <
LLAN [ 2 can 6D 2, () Qb (o) d
1 3 .0 i . Yo a2’ 4 g1 de
L ® 2 2 v b
(k"=a") n
+z£1 B, L Y tan (=) Q (a) Qf, (a) da
 m- ] r -
- 2 L Q*, (3_)
{ Zf%_ enmsin = : i am , 4'=1.2....,L for ™ modes
& 19, (8 |
} 0 , L'=1,2,...,L for TE modaes (18)
-

The upper quantities within the square bracket in (18) are associated

with positive z incident modes, and the lower quantities are associated

with negative - incident modes. Both cases are included because we are

interasted in the transmigsion coefficients as well as the reflection

coefficients. The integrals sre evaluated by numerical integration, and

the resulting system of linea- equations is solved as usual for the

unknowns A's and B's by matrir .aversion.
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The choice of basis functions, i.e., the gsand q's, is based on
previous experience and the congideracion of the behavior of the
currants at the edges of the septum and the strip. Only two terms for
the expansion of the currents on the septum are retained, which asre
believed to he adequate for rthis analysis. The basis functions aad

their Fourier transforms are shown in Table 1.

Let us now consider the case of interest, namely, one in which the

incident fields are IEom modes. We have n=0, and the following relations:

Yg = kz - az (19)
2
2 2 mmr
BOm k™ - (b ) (20)
When n=0, (18) can be simplified to the following
YA D
2 ;- tan ()
T A - P_(a) P*,(a) da
{0 ! la 193 i '
2
“pr, 8, ) |
TP (8
e 2 gtn@p ¢ 10 yiag, g, 2
I Om’_ .
2 o Yob
gL - 's
LA [ 7o tan () Q@) Qf(a) da =0, 2'=1,2 (21)

The equations for A's and B's are uncoupled. Therefore, A's and 3's can

be solved for separately. The system of equations for B's is homogeneous,
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which leads to the conclusion that all B's are zero. Consequently, there

are no components of the current in the z direction either in the septum

or the strip. In the following development, only the system of equations

for A's is investigated. Observe that the solution of A's involves an
inversion of a 3 x 3 matrix, which is an easy task for the computer. How-

ever, the evaluation of the matrix elements involves nine complex integrals

to be numerically integrated. Since there are singularities in these integrals,
we must examine the integrands carefully to make sure that the numerical
integration is applied correctly to give accurate results in spite of the
singularities. Theraefore, it 1s useful to write the expressions appearing

in the integrands of (21) in an explicit manner as follows:

tz ta, 2
PoPs = Ton ©%XP (-2 7]
2
ct ca ta Y t
PlPa 'l;F" I (—2—) exp [-(—-;;-) ] exp [jrx(2 +d + 2)]
<t g (&2 ta,2 S L
PoP¥ '15/TJ° (G exp [=(F)7] exp iz +d +3)]
ct ca ta, 2 e t
P2P6 = 116/77 3, CE-) exp [-(7)7) exp [Joa(G +d + 2)]
P ey =g S 1 (D) emp (<D ] exp [JaE +d + Dy
02 116/7 1 V27 exP 4 exp a3 2
c 2 ,¢ca
PFI16 Yo (D
2
PP% = & 3¢ (2 . (22)
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Note that PIPS’ PZPI, etc. are not of interest here because the corresponding

integrands are odd and therefore the integrals involving them are identically

zero. YNow observe that the integrand in (21) contains a simple pole located
at a = 801 on the path of integration for 0 < a < = , provided that the

wave number satisfies the following condition:

=< k<3

o4

(23)

This is the case when the incident field is the dominant, propagating mode
in the waveguide. Introduction of some loss in the medium clarifies the
position of the poles along the integration path, as shown in Fig. 2. Each

of the integrals in (21) can be written in the following form

o -f 3 .
[ Fada = [ O F(ayaa + f % reayda+ fa F(a)da + 73 Res (-8.)
Jem | e -
801 201
230, 0
- 7j Res (801) = J F(a)da + f F(a)da
- -28

01

2501
+ f F(a)da + [. F(a)da + 7 Res (-801) - 7} Pes (801)
0 2301

-2801 0
= J F(a)da + f [F(-ZBOl -q) + F(a)] da

201

801
+ f (F(a) + F(ZBOl - a)] da
0

+ (' F(a)da + 7 Res (-301) - 7] Res (801)
’2301
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In the above equation, a bar across the integral sign means principal value
integration. The method of foldover as shown makes the new integrand remain
bounded at the singularity of the old integrand; hence, this new integral

is easily evaluated by the numerical method. Also, since the integrand

goes to zero rapidly as a becomes large, the integration limit = can be
replaced by a large number, e.g., l4 301. It should be noted that if the
foldover method was not used, the integral could still be evaluated numer-
icaliy, in some cases, but the integration limit = must be replaced by a much
larger number because of the heavy tail of the integrand, and doing—so requires
increased computer time and th2 results are less accurate. The residues given

in (24) are easily calculated and are given by the general form

*
Res (28 - c— Pi (2) Pi‘ (a)

0l a = :BOl

, 1, 1" =0, 1, 2

with Pi (a) P:, (a) given in (22).

(25)

Having discussed the evaluation of the matrix elements in detail, we can
proceed to solve the matrix equation (21) to obtain the a's. Having found
these A's, we compute fo(a) from (15) and then calculate the scattered fields

from (2). For a=0, both E: and E; » O, and cthere is only E;, which can be

written as
e Gy 2 stn [vy (b =y)]
- r =Jwug L Aipi (a)
s b ) 270 cos r¥ob i=0
B, (0<y <) [—i-; sin v, v
exp (-jaz) da 6
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rv’kz-az 1f k> |al

where v, =

j/a?-k2 1f  k<lal
<

Let us evaluate (26) at y = 'g' s
r Yo® -
s b -jkao 2 ® tan —~ 1
EX(Y'E) 2 L A BT Pi(a) exp(-jaz) da
1=0 * == Yo ‘
_ - J

2n

Since the scatterad fields on both sides of the beam equalizer are given by

(27), we can compute the transmission and reflection coefficients by
normalizing these scattered “ields to the incident field given in (1).

The reflection coefficient R can be expressed as

where the poles are given by

g, = -8 ._,{z_(%) ; Cpoy = 1Y () =k

1 01 - m>3

and the residues at these poles are given by

4 Pt('BOI) axn (j"BOl_)
)

R"i(cl) -

5" (<84
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4 Pi(jxm) exp (xmz)

Resi(:m) - Resi(jxm) - > ) . m > 3
b (Ixg
with Xp ™ i(u;—") -k2
t t txm 2
P (Jx ) = —— exp [x (c+td+3)] exp [(—=) ]
0w’ T~ Xn 2 4
X_¢
¢ m c
c
L Xn® <
Pz(jxm) 5 exXp ( > ) jIl (2 xm)
and Io, Il are modified Bessel functions of the first kind. In deriving (28),

the integral in (27) has been evaluated by the residue theorem with the
contour closed in the upper half of the a-plane. By the same token, the
transmission coefficient T can also be obtained, except this time the contour

is closed in the lower half of the ax-plane.

s
T .EL .E
Ei 2
b z>0
-1fexp(j8012) 2
- m N N S Res, (5) ] (29)
0l i=0 m=1,3,5,..,

where the poles are given by

2, =8 . = k2o (D)

1 01l b
R T 62
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and the residues at these poles are given by

] 4 Pi(BOl) exp (-jBOlz)
Res, (3,) =

1*°1 sz
’ oL

;.
\ 4 P (-3x ) exp (=x_2)
‘» Resi(c )} = Res,(-jx ) = i ! L n , m>3
! m i m 2
i b (-jxm)
; / 2
! with Xg ™ (u;—") k2
t t t’(mz
Py (=3xp) = —= exp [=x, (ctd + P exp [(—7)]

' /7

c ch <
Py (ixy) =g exe (50 I G xg)

- pi3 - &) [ ¢
Py (=ixg) = - exp (=xp 3) [=i1; Gy)]
and IO’ I1 are modified Bessel functions of the first kind. Numerical
results indiczte that minimum reflecti.r and maximum transmission can be

| achieved if the separation between the septum and the strip is 0.1

4 ’ wavelength for the given dimensions in Fig. 1.

The radiation pattern of the waveguide ferd with beam equalizer
can now be computed in the following manner. First, the aperture field
distribuction in the plane containing the waveguide mouth is estimated by
a superposition of the waveguide mode field at this plane with each mode
being waeighted by the corresponding transmission coefficients for the modes.
: Since the transmission coefficients have been evaluated at a diiferent
reference plane, it is necassarv to refer thegse transmission coefficients

. back to the aperture plane. This is done by multiplying the transmission
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coefficients by an appropriate correcting factor, which is a phase factor
for a propagating mode and is an exponential factor for an attenuated
mode. The radiation pattern is then obtained by the familiar Fourier
transform relation between the far field and the aperture field. For IEnm

modes, the far fields are given by the following expressions [2]:

1/2 2

u (rab) "~ singd an nm
E, =- (5 [l+—cose+R(l-—k—cosa)]
3 € 23 " k
r
nm
ar . 2 mm 2, .
[(a sing)” - (5 cos9)”] é‘nm(a,é)
E = - (3)1/2 (ab)% sind sins cose
? : 223
[cosd + =22 + R (cose - =] ¥_(5,2) (30)
k am
. 7Ta an ., ,1b mm
with sin( L Sin@ cose + 2) sin(- sin® singy + -2—)
v = .
.m(e.a) - 3 — " 7 —
(T sind coso) - (—2-) (T sin® sine) - (—2“)

. exp { =3 [kr=7 sind (a coss + b sine) - (mwmel) 71!

where (r,3,2) are the conventional right-handed spherical coordinates. The
total radiation pattern 1s then obtained by a superposition of these
{adividual mode patterns with the appropriate transmissionu coefiicients
referenced at the aperture plane. Computed patterns and numerical results

are presented in the next section.
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ITI. Computed Results

The performance of the square waveguide feed with beam equalizer
whose dimensions are shown in Fig. 1 with d = 0.1) is evaluated over a
frequency band of operation. The value for c has been chosen experi-

mentally to be 0.25\. The computed radiation patterns in the E- and

TR

| H-planes are presented in Figure 3. The beam equalization is quite
satisfactory over the entire band. The corresponding aperture field
distributions are shown in Figure 4. Looking at these aperture dis-
tributions,l one can explain how the beam equalizer works. It goes

as follows. The aperture distribution for the E-plane pattern is

A atm—

uniform which gives a familiar (sin x)/x type of pattern. The H-plane
pattern is due to a cosine-taper type of aperture distribution if there

is no beam equalizer present. Hence, the beamwidth is larger than that

of the E-plane pattern for a square waveguide aperture. However, the
introduction of the beam equalizer forces the H~plane aperture field

to vanish at the center of the aperture, which makes the field distri-

R

p bution look more uniform. Hence, the main lobe of the H-plane pattern
{ narrows to achieve the beam equalization effect in the E- and H-planes.

The pattern is mainly determined by the septum; the post is present for !

1These curves are generated using only the first three terms in the
modal series expansion. While the boundary conditions at the wave-
guide walls are satisfied perfectly by definition of the modal func-
tions, there appears to be a small residue of E, at the septum in

the middle of the waveguide. This residue is solely due to the
truncation of an infinite series to a finite number of terms. Perfect
cancellation can be approached when more and more terms are used in
the series.
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impedance matching. The computed reflection coefficients over the

frequency band are shown in Table 2. If the post is absent, the reflec-

“tion coefficients will be much larger than those shown in Table 2.

IV. Conclusions

A septum and an impedance matching post used as a beam equalizer in an
open-ended waveguide-faed for reflectors used in satellite communications
svstems have been analvzed by using a spectral domain approach. The
computed radiation parterns in the E- and H-planes, as well as the
impedance match results, have been presented in the paper. The perfcrmance
of the beam equalizer over the entire band of operating frequency has
been evaluated. The results indicate that the E- and H-plane principally
polarized patterns are equalized extremely well over the entire frequency

band of operation and that the impedance matching is also satisfactory.
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Table 1.

BASIS FUNCTIONS IN SPATIAL AND SPECTRAL DOMAINS

Spatial Domain Spectral Domain ’
—  — — —— —— ———————————}
rhcHd+ % 2 . ¢ el
Pol2) = exp[-(——t——) ] Po(u) = —— exp [-Ja(cHd+ )] exp(-(57) ]
= NG
2
p,(2) = L c c ca
1 5 Pl(u) = 7 exp (-ja-z-) Jo(-z—)
1_(2 + c/2)
c/2
z +c/2 i
pz(z) - c/2 . Pz(a) = %? exp (-j %F) Jl(%?) i
z +c/2
L= &)
T 1.5
- L T - . ca T1°2
ql(z) V/; ( <72 ) Ql(a) %, °XP (-] >/ =
2
1.5
.2 +c/2 _ iz +c/2 - i cxy ~2°2
qz(z) Ny V{ (-273——- Qz(u) 4 exP (-3 2) =

JO' Jl, and JZ are Bessel functions of che first kind and of order 2ero, one, and

two, correspondingly.




TABLE 2

REFLECTION COEFFICIENTS OVER THE FREQUENCY BAND

d = 0.1

Frequency (GHz) l Reflection coefficient R VSWR = *—ﬂ—R-L
’ 1=/ R
3.75 0.2729/-130.25° 1.751
T
3.85 ! 0.1879/-134.90° 1.463
3.95 l 0.1071/-162.02° 1.240
4.05 0.0358/-167.87° 1.074
4.15 } 0.0442/73.10° 1.092
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Figure 2.
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Location of poles in the integration path of integrals in Eq. (21).
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ABSTRACT

In this paper, we apply a novel technique, called the spectral-iteration
approach, for analyzing the problem of scattering from periodically perforated
screens which find useful applications as radomes, cptical filters, ariificial
dielectrics, and so on. The formulation is carried out in the spectral domain
where a set of algebraic equations is obtained directly for the spectral coef-
ficients of the aperture field distribution (or the induced current density)
rather than via an intaegral equation formulation. These equations are then
solved simultaneously using an iterative procedure developed in this pape.
that circumvents the need for matrix inversion. Because the matrix solution
is avoided in the spectral approach, it is capable of handling large aperture
sizes in a computationally efficient manner. The efficiency of computation
results from the use of the FFT (Fast Fourier Traasform) algorithm which is
employed in the derivation of the algebraic equations and in the iteration
procedure. A unique feature of the spectral-iteration approach is that it
has a built-in boundary-condition check which provides a reliable indication
of the accuracy of the solution. This paper also shows that the spectral
domain technique can be applied to even a wider class of zeometries, =.3.,

the step discor:inuity in a waveguide.

The work was supported by the Office of Naval Research, Contract
N00014-75-C-0293.




I. INTRODUCTION

Pariodic structures such as arrays pf conducting strips or periodically
perforated screens which can be aither free-standing or priated on dislactric
substrataes (see Fig. 1) have frequency selective propertias, and find many
applications as artificial dielectrics, optical and quasi-optical devices,
and dichroic surfaces for antenna reflectors and radomes.

Couventionally, the problem of electromagnetic scattaring Zrom these
seriodic structures i3 attacked using the aocde-matching procedure employed
in conjunction with the method of moments. A description of this procedura
can be found in a aumber of papers on the subject by Chen [l], Lee [2], and
McPhedran and Mayscre (3]. Though this method works quite well 4a che low-
frequency region, it becomes prohibicively coscly if aoct impraccical ac che
1igh frequency regioan where the aperture size is one o two wavelaagths, or
larger, bDecause the matrix size required for an accurate solution >ecomes
prohibitively larze and the numerical compuctaction bYecomes axtremely Cime-
consuming and coscly. The high frequency ctechniques, e.g., GTD, cannot he
appiled to circumvent the above diff-culcty either, because the complax
geometrical configuration of the structure does not lend icself to zhe rav
formalism of GTD. Ia this paper we introduce a new technique dased sn the
spectral domain approach which provides an afficient and accurate soiution
to the gracing prcblems described in this papaer.

As 2 first scep, the new approach begins wizh the formulation of the
problem {in cerms of an Iintegral equaction {a the transform domaia. The
scandard procedure for deriving che intagral aguaction £ir cthe unkaown
apercure field (or che induced current) is scill Zollowed; howevar, :ia the

cransfora domain the comvoiition form of che integrai aquation jeccmas

o
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an algebraic one. TFurthermore, because of the periodic nature of cthe
structure, che transform naturally takes the form of DFT (discrete Fouriar
transform) which can, in turm, be efficiently evaluated using the FFL (fastc
Fourier transform) algorithm. The transformed i{ntegral equaction is
subsequencly solved, using an iterative procedure, simultaneously for the
aperture field and the {nduced current. It is evident that the method
avoids the time-consuming steps of aevaluacting tha matrix elements and
their subsequent inversion. More importantly, the problem of storing and
nandling over-sized matrices is circumvencad aven at high frequencies,
where the number of unknowns can axceed the figure 2000. An added feacure
of the method is that a built-in step in the iterative procedure provides
a convenient measure for the dboundary condition check, a feature not
readily available in coaventional approaches. ~Finally, the ccavergence

of the itesrative procedure is anhanced by combining it with a variactional
approach in a zanner axplained later. For complaeteness, we zmention chat
an approach similar o c=le prasent one has bSeen used by Mictra and Ko 4]
in studying che single-scactterer (as opposed o the periodic graciag)
problem. The above authors nave used the GTD solution as the zeroth order
approximacte solution and have also employed an izerative procedure o
generace cthe final solucion. However, to-date this procadure has noC Seen
applied %o the grating problems being zonsidered in this paper.

In the 2ext section, we presenc the formulacion of the periodic
grating problem. Ia Section 3, we describe the iteracive procedure. Ia
Section 4 we Lllustrats the applicacion of che zechnjjue to a number of
practical geometries. 7inally, ve demonscrate ia Seczion 3 chat che
approach (s useful for a class of closed-region prodlems, ¢.3., waveguida
discontinuicies. A brief summary of cthe japer is inciudad in Seccion 3

and some conclusions are jresenced,.
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II. FORMULATION

For che sake of illuscracing the spectral approach, we consider the
problam of a uniform plane wave scattered from a free-standing neriodically
perforated conducting screen shown in Fig. 2. However, the 2ethod of
solution is easily and counveniently extendable to the case of a scraen on
a dielectric substrate.

Due to the periodicity of the structure, the electric field on either
side of the scresn can be axpanded in cerms of che Floquet space harmonics.

Using the vt time convention (suppressed), we can write

( iy +
iEx fzx - - X "an®
| - + 1 ) V__ e for z > 0,
B! Ei MWe® Qo= Y+ an
Uy) Uyl wn) )
and (L)
) -
;Ex * » X } -y_ 2
- 7 N LY e ™ forz <O
! ( - o - mn
'E | meee ge-e |7 |
y) | ma)

P i 4 el + <= v [
shere E” represents the incident fiald, &xnn' Ymn) and (xan' ‘nn) ars the
reflaction and the cransmission coefficients of the Floquat's harmonic
aodes, respectivelyv and tan's scand for the Floquat mode functions, given

by
Yon * oxvij(uuox + vany)l

where

21 .
u .—-‘
20 a sin ¢ cos» ,

a,a = 0,21,:2,
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Figure 2. Free-standing, periodically perforaced screen illuminacted

by a plane wave propagacing ia ki direction.




vm-—‘:'l--z;ﬂcocﬂ-ksinesin: ,
and
[-J(kz L R S R TSRS (LR
= i-[(uio +v" ) - kz 1/2 if kz < (uio + V:o)

The z-component of the E-field can be derived from (1) using the divergence

theorem.

Enforcing the coadicion thact the tangential field is continuous acrass

the incerface, we Sbtain

+ - + -
Xon * xun » Yon ® Yan when m $# Q or 0 ¢ 0
and
LN S S i
xoo M xoo ’ Yoo * Ey Yoo '

The H-fi{eld in the region z > 0 and z < 0 zan 5Se derived from

Zquacion (1). Evaluacing the H-field ac z = 0 and z = O+, subtracting

zhe expression for one from the other, and naking use of the requirement

that the tangential components be continuous icross che aperturs, one

arrives at the equation:

I3 . f \
LT (A Bp) fx ) (- a{-é— . 1
— 2 Z b ™ . . |for 2=
-jw“ [ T - an '( ),
c._ - Y -t e ait gyl
, @ m) mJ y "‘2 J)
(2)
where ﬁi is the incident H-field,

T is che induced current on the surface,

an mo =2 ‘m
2
3m - v i - 'fm-
2
can ey = ao/vnnﬁ
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In (2) we have used the notation that for a function £(r) defined on the z = 0

plane, where T is the position vector on that plane, the truncation operacor

3 is defined by

3(£(2)) = O for T on the conducting surface
->. -
= £(r) for r in the aperture

and

IEMD)) = £(F) - 3(ED) .

The cbvious dentizy 3(7) = F and chat z x (f(z = 0F) - d(z = 37)] =

Lo}

have also been used in dariviag (2).

Unlike the integro-differential equacion in the conventional zethod,
which applies oaly in zhe aperture (or strip) regiom, (2) is valid over
the entire surface. The price paid for extending the equation to the full

range is the introduction of an extra unknown J. However, as we will soon

see, the additional uaknown J can be solved for along wich che apercure {ield

using the iterative procedure discussed ia the next section.




III. ITERATIVE PROCEDURE

The summation involved in (1) and (2) can be readily identified as the

DFT operation. Lat F be the operator representing the DFT, and lec En

rapresent the tangential electric field in the transformed domain.

Idencifying (x;n. Y;n) {n (2) as the Fourier coefficients of E: , and

writing G for the matrix
( ;
‘Aan  Bom ‘
‘(Cm 'Am :

we can write (2) symbolically as
FGE) =B + 9D 3

where the subscript t indicates the cangenrial componentcs, and it is

understood that all che quanticias are evaluatad at z = 0. ;
if the induced current were available, the solution for E_ could g

" t

be immediacely obtained by invokiag (3) and by using !

E ettt sy (&)

In practics, hovaver, J is the unknown to be solved for, togather with E_

and hence (4) cannot be used directly. Inscead of using (4), a recursive

h

relation becween the (a + l):h approximate solution and the a°

approximstion Eén)

Z(a+l)
E

for simulcaneously using an itarative »rocedure.
(a)

Tc derive the recursion formula for ?
(n)

, we bdegin wizh 73), which

zelaces J and E(n), and wriza

is now derived and che two unknowms E: and J ara solved

e ——— —————— - ——— 340 Y
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330 . p(c.'é'é“)) v 8 (5)

Substituting (5) into (%), one obtains

.\

géa-'-],) . &-l(F-l(_éit + X7 (&.égu)) - §it-))) . (6)
(n)

Equation (6) is the desired recursive formula. Berfore inserting Ec

into
(5), we adjust its amplitude by multiplying with a scala factor K, computed

according to the variation expression

G g,
R = t m
<§(n)' F(G-f(n))>
T t
where <, g> = fapcrturef.s'da'

Equation (7) is obtained by applying the one-term Galarkin's mecthod
#(n)

to Equation (3) using £ as the testing function. It is apparent thact
X = 1 when §£n) is the exact solution. K, therefore, also provides an
indication of the accuracy of the nth icaratad resul:r in a weighted-
average sense.

In the following ve proccid to outline an iteracive procedura for
solving (6):
§0),

1. Begin with an initlal estimaca The amplitude of

EEO) is to be properly adjuscted using the scale factor
K determined from Equatiocn (7).
3(0) . =(0)
2. Compute Ec , the discrete Fourier transform of E: .

Thiz step can be carried out efficiently using the

FFT algorithm.

()]

-
3. Compute G'E: .
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p =

Y

i
rr —
- o~ - -

Obtain the DFT of &'3(0)

. using FFT.

Fes

/,

Subtract -ﬁt from the rasult obtained from step 4.

(V1]
.

This gives the zeroth-order approximate solution 3(0).

Generally, the approximate solution for J obtained in
this step has non-zero values extending beyond the
conducting surface. The satisfaction of the boundary
condition for the iaduced current can thus be verified
by checking how well the nth approximacion for the

current 5%

is confined to the conducting surface.
gt =(0) - -
5. Add - . to J obtained in the last step, and take the

inverse DFT of the resulc using FFT.

~4
.

Mulciply ¢t by the result obtained from stap 6.,

obcaining %El).
8. Take the inverse transform of éél) to get 351). The

exact solution for E: should have zero value on the

conducting surface. This criterion serves as a boundary

condicion check for the approximace solucion Efn)

obtained in this step.
f(l)
t

9. Rspeat che whole procedure, as necessary, using 3( )

to generate the next higner-order solutions 3(1) and
EEZ) until convergence i3 achieved.

Ia the following two sections several examples are presentad

i{lluscrace che applicacion of the techaijue described above.

'
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IV. SCATTERING FROM GRATINGS AND GRIDS

Let us consider a iree-standing, scrip grating structure illuminated
by a normally incident uniform plane wave as shown in Fig. 3. Let the
incident E-fiald be polarized parallel to che adges of the scrib (an
H-wave) .

The formulaction for this problem is givea by Equatiom (2). The
itarative procedure discussed in Seczion III {s applied to solve for

the tangential aperture E-field, Et’ and the induced currant densicy,

3.

Figure 4a shows che {iacident E-fiald cruncated in the aperture, which
is used as the zeroth-order approximation for E:, i.e., Eio) = Q(Et).
The 3(0) derived from EEO) i3 shown in Fig. Sa. 3(0) has significant

non-zero values a2xtending inco the aperture region. This could be axpectad

because of the crude initial estimate made for EEO)' Figure 5b shows 3(1)
obtained aftar cne {teration. Observe the significant improvement achieved
with just a single {teration even though the zeroth-order approximatiocn for

Ego) was rather crude. Yigher-ordar soiutions for Ein) (n)

and J , obtained
via further icerations, are shown, respectively, in Figures 4b to 4d and
Figures 5b co 3d. The rapid coavergeance and che accuracy, which is verified
by the boundary condition check of che solucions, are well-demonstrated
in these figures. The induced current density T also shows the axpectau
adge behavior, i.a., it becomes large ac the edges as it should for the
incident H-wave.

Figures 6 and 7 show the soluriouns for E: and J obtained after

four izerations when che graciags are illuminated by an obliquelv incident

plane wave with an iacident angle 3 - 30° and with che H-field pclarizaed
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Figure 3. Free-standing grating i{lluminacted bv a normally incident

H-wave.
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parallel to the edges of che strip (in the E-wave case).

conditions are satisfied extremely well by the results, and the aperture

E-field also shows the expected edge behavior for the incident E-wave.

Next we consider the scattering from a frese-standing conducting grid

illumirnaced by a normally incident plane wave. The geometry of che problem

is shown in Fig. 8. The aperture area is approximately Loxz whereas the

cell area is about ééxz. The initial approximation for E_ is still chosen

i
A
}
g to be the truncated incident field, and the dominant componenc of the
|
l

tangential aperture E~-f£ield is shown when the incident E-field is polarized

solved for.

in the y-direction.

For all the computations in this sectiomn, 32 terms in che Floquet

175 Syscem).

expansion functions are used in representing the unknown fields along
each of the two dimensions. This leads to le equivalent unknowns o be
The computation time, however, required for deriving the

solution is quite moderate (5 ~ 6 secs. of CPU time on the CDC Cyber

Clearly, any matrix method dealing with such a large aumber

of unknowns will be totally impractical.
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V. GENERALIZATION TO TWO-REGION PROBLEMS

In chis section, the iterative technique is further generalized to
analyze a wider class of geometries. These geometries are characterized
by the feature that they comprise a junction of two or more regions of
dissimilar dimensions. An open-region type axample 1s a corrugated surface
which can be thought of as a junction of two regions, viz., the infinite
half-space and a periodic array of short-circuited waveguides. For che
sake of simplicity, a closed-region type problem - a stap discontinuity
in a parallel-plate waveguide - is considered in this section. The geomerry is
shown in Figure 9. The incident field {3 a TE mode wave. The formulaticn of
this problem can be found in the literature. The integral aquation is given by

o E (x)E (x,x")dx' = jb E (x)K (x,x')dx’' - 29t (8)
Jo v ’ 0 v » X

for 0 < x<bH, z=30]

“here E_ i3 the unknown aperture E-fleld,

- q

d4° is che iacident H-field,

.}

«»
- ') m i e ar BT
K (x,x") Tou ) fg 3in T~ x sin = x',
ae—-

-
B x,x') @ == T ¥ gin 3 ¢ gin I 4

Juu o b b ’
J? - @EHHY2 e 2, @2
- a a
' o2 _ . 2.1/2 2, @2
(GO - D ik« &t
and
.
230 - (:J_)z)l/z el (ba_w)z '
+
“a” } ar.2 . 2.1/2 2 ,am2
(GDT =D i %t <« 07 .
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Figura 9. Step discontiauicy in a parallel-plate waveguide
with a TE incident wave.
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Noce that Equation (8) is defined in the region 0 < x < b. To apply the
iterative technique, it has to be extended to the full range 0 < x < a.

This is achieved by introducing an extra unknown function J(x), and the

exténded equacion cakas the form

a

) a -
f E_(x')K (x,x)dx' = j Z (x" )R (x,x")dx' + 8(-20D) + 3(J(x))  (9)
0 7 0o 7 x

for 0 < x < a

where for any function f(x)

I(f(x)) = £(x) L£0<x<bH ,
=0 ifbc<x<a ,
and

3(£(x)) = £(x) = 2(£(x))

A recursion formula relating the (a + l)(:h order solution £

nCh solution E;n)

(a+1) <o the
b4
can be derived via a procedure similar to that developed
ia Section III. The formula is
-a a
| g (@) o= j gt
0 ¥ o 7Y

|

o7 ‘o 7
(10)
Equacion (10) is now solved using an ictaracive procedure similar to

that developed in Section III. The incegracions in (10) can again be
carried out using che FFT because of the characreristcic nature of the
xernels. Figure 10 shows the aperture E-field distribution at the
discontinuity. The initial approximation for Ey is taken to be the
incident field truncated in the aperturs.

The result is obtained in three i:cz;:ious with 32 axpansion functions
used in representing the unkaown field. We nota that che boundarvy condi:zion
an Ev. viz., thac it vanishes ac che edges, is sacisfiad bv the itaraced

solucion. 100
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VI. CONCLUSION

In chis paper, an iterative tachnique applied in the spectral domain
has been employed to solve the problem of scattering from two-dimensional
periodic s::uccufts. Applications of the tachnique have been illustratad
using a aumber of examples. This spectral-izeration technique has been
found to be very afficient for two reasouns: (i) it is applied in the
transform domain, where only algebraic operations instead of convolution
integrations are imvolved, (ii) the use of the efficient FFT algorithm,
which is employved to carry out the algebraic DFT, i3 natural to the
procedure. The technique alsoc has a builc-in boundarv condition check
which verifies the accuracy of the iterated solution - an imporcant feature
oot availabla i{n conventional aetheds. Furthermore, the iaduced current and
the aperture fiald are solved for simultaneously which is another uaigue
advantage not availabla in ocher methods. Finally, as amentioned earlier,
this technique is particularly appealing in the hizh frequency analysis
whers the moment nethod has unsurmountable diZfficulties and other asvmpzotic
techaiques fail. Before closing, we would like to point out that at the
lower end of the frequency scale the effect of mutual coupling among
adjacent apertures (or conducting strips) becomes significant and
the field distribution in the aperture begins to deviate substantially
from the incident field. Consequently, it becomes difficult to choose
a good initial approximation for the aperture field, particularly the
cross-polarized component, such that a rapid convergence of the
iteration process is ensured. Fortunately, however, an alternative

method also developed by the authors [5] and called the Spectral-
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Galerkin approach, has been found to be well-suited in the low }

frequency region. This approach is based on an application of the

Galerkin's method in the spectral domain. It selects the proper

expansion functions which are analytically Fourier transformable

and which satisfy both the boundary and edge conditions for the

unknown fields. It has been shown that the required matrix size is (

much smaller than in the conventional schemes and the numerical l
.

computation is very efficient.
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APPENDIX E
A SPECTRAL-ITERATION TECHNIQUE FOR ANALYZING A

CORRUGATED-SURFACE TWIST POLARIZER FOR SCANNING REFLECTOR ANTENNAS
R. Kastner and R. Mittra
ABSTRACT

In this paper we present an analysis of the corrugated-surface twist
polarizer which finds application in the design of scanning reflector
antennas. We employ the spectral-iteration technique, a novel procedure
which combines the use of the Fourier transform method with an iterative
procedure. The first step in the spectral-iteration method is the con-
version of the original integral equation for the interface field into a
form which is suitable for iteration using a method developed previously
[51-(7]. An important feature of the technique is that it takes advantage
of the DFT type of kernel of the integral equation and evaluates the
integral operators efficiently using the FFT algorithm. Thus, in contrast
to the conventional techniques, e.g., the moment method, the spectral-
iteration approach requires no matrix inversion and is capable of handling
a large number of unknowns, Furthermore, the method has a built-in check

on the satisfaction of the boundary conditions at each iteratiom.

The work was supported by the Office of Naval Research, Contract
N00014-75-C-0293.
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A SPECTRAL-ITERATION TECHNIQUE FOR ANALYZING A
CORRUGATED-SURFACE TWIST POLARIZER FOR SCANNING REFLECTOR ANTENNAS

I. INTRODUCTION

This paper presents an analysis of the corrugated-surface twist
polarizer, a device which is used to rotate the polarization plane of
an incident wave by 90°. Such a polarizer finds applications in scanned
reflector antenna systems (Fig. 1) where a rapid mechanical scanning
is achieved by the movement of the passive, light-weight polarizer [1].
The feed horn radiates a horizontally polarized field, which is reflected
from the "transflector" radome, comprising horizonmtal strips, onto
the twist polarizer. The twist polarizer is so designed that upon
reflection from the polarizer the horizontally polarized incident wave
is changed into a vertically polarized reflected wave to which the
radome is virtually transparent. Thus, the radome also serves as a
collimating device and the antenna is compact and light weight.

A common type of twist polarizer comprises a set of thin metallic
strips or wires placed on top of a dielectric substrate, which is approx-
imately A/4 thick and is backed by a ground plane [1], [2], [3], [8].

In this paper, we investigate the design of an alternative configuration
which also can be used for rotating the plane of polarization of an
incident wave, viz., the corrugated-surface polarizer. 1Its basic
mechanism can be explained very simply {4] by noting that if the period
of the grooves is sufficiently small compared to the wavelength, a plane
wave polarized parallel to the grooves will be reflected essentially
from the outer surface of the polarizer, while a vertically polarized
wave will be reflected from the bottom of the grooves, which results in
a differencial phase delay corresponding to twice the groove depth.
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Thus, if the incident field were polarized at 45° to the direction of
the grooves, the horizontal and vertical components would have equal
amplitudes and phases, and a phase difference of 180° will be produced
by a groove depth of A/4. Unfortunately, the cell size is typically
not small at millimeter waves and the above result is not sufficiently
accurate for designing the polarizer.

The spectral-iteration approach {51, [6], [7], presented herein,
provides a method for efficient and accurate analysis of the corrugated
twist polarizer. >Unlike conventional moment-method and mode-matching
techniques, the spectral iteration technique requires no matrix inversion
and, consequently, large cells can be analyzed without any difficulty.
Furthermore, the accuracy of the solution can be conveniently checked
at each stage of the iteration. This is done by determining how well
the solution satisfies the boundary conditions and by verifying the

conservation of energy.
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II. GENERAL FORMULATION

Let the corrugated-surface twist polarizer, shown in Figure 2, be
illuminated by a plane wave with a wave-number B in the x~direction.
Because of the periodic nature of the geometries, phase-shift walls with
period a can be placed in the external region (z > 0) of the structure
and the problem can be reduced to that of solving for the discontinuity
between a waveguide with these phase-shift walls and the short-circuited,
parallel-plate waveguide of width b in the interior region (see Fig. 3).
In two cases, viz., the TE polarization (parallel to grooves) and the
TM polarization (perpendicular to grooves) need to be solved for
individually to obtain the differential phase shift between the two
reflection coefficients. For an incident wave polarized at 45° to the
direction of the grooves, the plane of polarization will be rotated by
90° if the differential phase shift between the two reflection coeffi-
cients is 180°.

The spectral-iteration approach for this problem is based on the
fact that the Green's functions for both the external and internal
regions are expressible in terms of Fourier-type series. Thus, in each
of these two individual regions the integral operator that relates
E- and H-fields is exactly invertible. Denoting the operator for the
external region, which is a cell bounded bv the phase-shift walls, by

L_, and the operator for the inner region by L+, we have the general form

Ly + Ly = 2" (1)
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in which Finc corresponds to the electric field incident from the outer

. region and ¢ is the unknown magnetic field in the aperture. (If, instead,

the unknown is the electric field in the aperture, then F is replaced by

the incident magnetic field.)




IIT. TM POLARIZATION

In order to illustrate the application of the spectral-iteration
technique, we consider the case of the twist polarizer illuminated by a
T™ polarized wave. (The TE case 1is discussed later.) We choose ¢ to
be the unknown electric field in the aperture and derive the following
integral equation via the usual formulating procedure of matching the

interface fields.

3(@rEDx' -1 (s4nilyx

© a
% Z J——l——— p(x")e e dx' + H(x) = ZHinc(x)
ne-—-xo 2-" 2
0 vk -(8+n;—) 2
where
[ b
% } J % L - v(x')cos ‘-;i x' cos %1 xdx', 0<x<b
n=0 2 ,mm 2 2 mm, 2
0 cot(rko-(g—) d) '40-(1: )
H(x) =
h(x) b<x<a
3)
and
-jBx
Hinc(x) - %)
2 2
ko -8

h(x) is the unknown magnetic field outside the aperture where the
boundary condition on the conducting wall requires ¢ to be identically

zero. For the sake of convenience, we have suppressed the factor -jup

in H and H™®. Equation (2) is of the form of (1). .
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The operator corresponding to the external region
- @

L() =3 [ -
"0 v/kZ'- (8 + n 21y

3 (8402 (x"-x)
e dx'(+) (5)

is invertible in the range 0 < x < a, whereas the inner operator

«©

L+(-) =% Z h| 1 cosg—"x' cos%lxdx'(')(ﬁ)
n=0 2 ar, 2 ;2 mr, 2
cot( k- (1—,—) d) /k.o - (-S—)

has the same property in the range 0 < x < b,

The iterative procedure for solving (2) will now be given:

1. Assume an initial y(x), such that y(x) = 0 in the range !

i
b < x < a. '
Evaluate L_(¥) in the range O < x < a via a two-step FFT. |

3. Compute ZHinc - L_y to obtain H. '

4. Evaluate L;l(H) using a two-step cosine FFT transform ‘
over the portion 0 < x < b to obtain the next estimate for !
¥ in the aperture. i
5. Add zeros over b < x < a and return to step 2. h

s

which in turn requires multiplication by the factor cot(v'kg - (‘:_“')2 d).

This factor becomes small in the neighborhood of d = A/4 and for m = 0 '

It is evident that the procedure requires the evaluation of L:I -

and, hence, presents no difficulties in implementing the iteration ;

procedure. Had we chosen ¢ to be the electric field, a similar iteration

procedure would have required the multiplication by the factor
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tan(/kg - (%1)2 d) and the process would have diverged. Thus, it is

important to choose the proper unknown for ¥ when using the iteration
procedure.

The reflection coefficient is computed at each step of the iteration,
and convergence is achieved when its absolute value tends to 1. Since a
reflection coefficient close to +1 is expected, a uniform distribution may
be chosen as an initial guess. It is found that, even with this initial

choice, convergence is attained within three or four iterations.
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unknown

a ) J.F v(x') e . e dx' + E(x) = 2E" " (x)
n=-® 2 2w, 2
0 k° - (B + ) ) ]
with
, 2 B 5 ean(/k -(g" 2 4
' ar _, mr
;z w(x)sinb—x sinb—x 0<x<b
- / ‘ 1
m=1 0 kg-(%l)z 1
|
E(x) = { 8
0 b<x<a
and |
-jBx
EIMC(x) = 2 (9 |
2 2 :
ko -8B :
|
where a factor jwe has been suppressed from E and Einc. Next we redefine

L_ and L, in a manner analogous to Equations (5) and (6), and outline

the iterative procedure for solving (7} in the following:

1. Start with an initial guess for ¢ (e.g., a uniform distribution ;
with a corresponding reflection coefficient of -1). i
2. Compute L+(w) over 0 < x < b by a two-step FFT sine transform. ‘ E 1
3. Add zeros over b < x < a to obtain E over the entire range i
' 0 < x < a and evaluate 2E17¢ - E.
. 4. Compute L:l of the last result over 0 < x < a and obtain the 1
next estimate for y(x). . \
5. Go to step 2. '
113
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IV. TE POLARIZATION {

this case, the magnetic field distribution is chosen as the

v(x). We have the following integral equation:




For the TE case being considered here, step 2 requires the evaluation
of L+(w), as opposed to the computation of L;(w) in the TM case. The
evaluation of L_, in turn, requires a multiplication by tan #kg - (%ll)2 d.
However, this does not pose a problem since the term m = 0, which diverges
in the neighborhood of d = A/4, is excluded in the sine transform. The
convergence in the TE case is also attained with a very few iteratioms.

The use of the FFT procedure, combined with the small number of
iterations needed to attain convergence, result in a considerable saving
of computation time as compared to the conventional mode-matching and
moment-method techniques which require a matrix inversion. Furthermore,
the method can handle unit cells which are either large or small.
Naturally, a larger cell size necessitates the use of an increased number
of samples so that a typical sampling interval of about A/25 is maintained,
and the selection of a wider interval may slow down the convergence. Thus,
for a given program that has fixed dimensions of FFT vectors, i.e., a
fixed number of samples, there is an effective limit to which the frequency
can be increased. However, if the primary quantity of interest is tha
reflection coefficient, the detailed information derived from a fine
sampling of the aperture is not needed and a smaller number of samples

is sufficient. A technique for improving the convergence for such a case

ig described in the next section.
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V. SPEEDING UP THE CONVERGENCE

It should be noted that often the main difference between the approx-
imate ¢ derived after a few iterations and the exact solution is a complex
factor. One can partly compensate for this difference by multiplying ¢

at every iteration with the variational factor x, where

inc
X = <y, 2F "> (10)

<¥, L¥>

F is defined in Equation (1) and L = L_ + L+. The factor X, which tends
to unity as ¥ approaches the correct value, can be regarded as another
measure of convergence. Although the use of X is of little help when
the convergence is good, the incorporation of this variational factor
does improve the convergence quite significantly for an undersampled .
More importantly, it also helps to achieve convergence for an otherwise
divergent case when the variational factor is not used. This is

demonstrated in Table 1. »

TABLE 1. CONVERGENCE RATES, TE INCIDENCE, 25 SAMPLES

Cell size No. of iterations No. of iteratioms ;

(wavelengths) without variational factor with variational factor i

1

:i
.9 and below 4 3 ;
1.1 19 7 }
|

1.3 Divergent 13
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VI. RESULTS

A corrugated-surface twist polarizer was constructed and experimentally
tested. Its duty ratio b/a was 0.5, with a = 21 mm, or 0.6) at the center
frequency of 8.5 GHz, and d = 7,62 mm or 0.216\A. A comparison between the
computed and measured axial ratios at various frequencies is presented in
Fig. 4 for an incidence angle of 5°. Agreement between computations and
measurements appears to be very good, despite an uncertainty of about
t1° in the measurement setup and a slight inclination of the plane of
incidence relative to the direction of periodicity. Interestingly,
when the frequency is increased beyond the grating-lobe bound of about
d/X = 1 (not shown in Fig. 4), the computation predicts a sudden change
in the axial ratio and the reflection coefficient, whose magnitude is
no longer equal to one. The loss of reflected energy in the fundamental
space harmonic is obviously accounted for by a second space harmonic,

or a grating lobe.
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